We can install packages in the bottom left panel
Once the package is installed it will live in your JupyterHub, ready to be used any time you want
install the package palmerpenguins
now by typing
install.packages("palmerpenguins")
in the console
inside of this package is a data frame called penguins
Type penguins
in the console to load it…
You should receive a message: “Error: object ‘penguins’ not found”
That’s because you’ve only installed the package and have not yet loaded it into your workspace.
library(palmerpenguin)
library(palmerpenguins)
penguins
## # A tibble: 344 × 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## <fct> <fct> <dbl> <dbl> <int> <int>
## 1 Adelie Torgersen 39.1 18.7 181 3750
## 2 Adelie Torgersen 39.5 17.4 186 3800
## 3 Adelie Torgersen 40.3 18 195 3250
## 4 Adelie Torgersen NA NA NA NA
## 5 Adelie Torgersen 36.7 19.3 193 3450
## 6 Adelie Torgersen 39.3 20.6 190 3650
## 7 Adelie Torgersen 38.9 17.8 181 3625
## 8 Adelie Torgersen 39.2 19.6 195 4675
## 9 Adelie Torgersen 34.1 18.1 193 3475
## 10 Adelie Torgersen 42 20.2 190 4250
## # ℹ 334 more rows
## # ℹ 2 more variables: sex <fct>, year <int>
penguin
data set exists and we have access to it,
but it still is not in our environment.# putting the penguin data set into our environment (saving it locally)
df_1 <- penguins
You can name a data frame anything you want:
# saving the penguin data frame again but with a different name
penguins_df <- penguins
# it is best practice to use descriptive names for things that you save to your environment
# you can't use spaces and some special characters as your names. Use letters, numbers, and underscores
Accessing particular elements in your data frame is kind of like playing battle ship:
# this code will get the fifth row and third column of the penguins data frame
penguins_df[5,3]
## # A tibble: 1 × 1
## bill_length_mm
## <dbl>
## 1 36.7
To extract all of one row or column, leave the other value blank
# this code extracts all the data for the third penguin
penguins_df[3,]
## # A tibble: 1 × 8
## species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## <fct> <fct> <dbl> <dbl> <int> <int>
## 1 Adelie Torgersen 40.3 18 195 3250
## # ℹ 2 more variables: sex <fct>, year <int>
# we can also save this to our environment
# variable names can't start with numbers
# 3a <- penguins_df[3,]
penguin_3 <- penguins_df[3,]
You can obtain a column in the same way, just leave the other value blank. However, often you know the name of a column without knowing it’s position. For this, you can use a special command
# the following code extracts the column with body_mass_g
#penguins_df$body_mass_g
penguin_mass <- penguins_df$body_mass_g
# notice that if you save it, it doesn't show up when you knit
# to display the values call
penguin_mass
## [1] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 3300 3700 3200 3800 4400
## [16] 3700 3450 4500 3325 4200 3400 3600 3800 3950 3800 3800 3550 3200 3150 3950
## [31] 3250 3900 3300 3900 3325 4150 3950 3550 3300 4650 3150 3900 3100 4400 3000
## [46] 4600 3425 2975 3450 4150 3500 4300 3450 4050 2900 3700 3550 3800 2850 3750
## [61] 3150 4400 3600 4050 2850 3950 3350 4100 3050 4450 3600 3900 3550 4150 3700
## [76] 4250 3700 3900 3550 4000 3200 4700 3800 4200 3350 3550 3800 3500 3950 3600
## [91] 3550 4300 3400 4450 3300 4300 3700 4350 2900 4100 3725 4725 3075 4250 2925
## [106] 3550 3750 3900 3175 4775 3825 4600 3200 4275 3900 4075 2900 3775 3350 3325
## [121] 3150 3500 3450 3875 3050 4000 3275 4300 3050 4000 3325 3500 3500 4475 3425
## [136] 3900 3175 3975 3400 4250 3400 3475 3050 3725 3000 3650 4250 3475 3450 3750
## [151] 3700 4000 4500 5700 4450 5700 5400 4550 4800 5200 4400 5150 4650 5550 4650
## [166] 5850 4200 5850 4150 6300 4800 5350 5700 5000 4400 5050 5000 5100 4100 5650
## [181] 4600 5550 5250 4700 5050 6050 5150 5400 4950 5250 4350 5350 3950 5700 4300
## [196] 4750 5550 4900 4200 5400 5100 5300 4850 5300 4400 5000 4900 5050 4300 5000
## [211] 4450 5550 4200 5300 4400 5650 4700 5700 4650 5800 4700 5550 4750 5000 5100
## [226] 5200 4700 5800 4600 6000 4750 5950 4625 5450 4725 5350 4750 5600 4600 5300
## [241] 4875 5550 4950 5400 4750 5650 4850 5200 4925 4875 4625 5250 4850 5600 4975
## [256] 5500 4725 5500 4700 5500 4575 5500 5000 5950 4650 5500 4375 5850 4875 6000
## [271] 4925 NA 4850 5750 5200 5400 3500 3900 3650 3525 3725 3950 3250 3750 4150
## [286] 3700 3800 3775 3700 4050 3575 4050 3300 3700 3450 4400 3600 3400 2900 3800
## [301] 3300 4150 3400 3800 3700 4550 3200 4300 3350 4100 3600 3900 3850 4800 2700
## [316] 4500 3950 3650 3550 3500 3675 4450 3400 4300 3250 3675 3325 3950 3600 4050
## [331] 3350 3450 3250 4050 3800 3525 3950 3650 3650 4000 3400 3775 4100 3775